US009448845B2

a2 United States Patent

10) Patent No.: US 9,448,845 B2

Asaad et al. 45) Date of Patent: *Sep. 20, 2016
(54) EXTENDIBLE INPUT/OUTPUT DATA GO6F 9/54 (2006.01)
MECHANISM FOR ACCELERATORS GO6F 12/08 (2016.01)
(52) US. CL
(71) Applicant: INTERNATIONAL BUSINESS CPC ... GO6F 9/5016 (2013.01); GOGF 9/544
MACHINES CORPORATION, (2013.01); GO6F 12/084 (2013.01); GO6F
Armonk, NY (US) 12/0835 (2013.01); GOGF 12/0855 (2013.01)
L (58) Field of Classification Search
(72) Inventors: Sameh W, Asaad, Briarcliff Mano.r, NY CPC GO6F 9/5016, GO6F 9/544’ GO6F 12/084,
(US); Parijat Dube, Yorktown Heights, GOG6F 12/0835; GOG6F 12/0855
NY (US); Hong Min, Poughkeepsie, USPC oo 711/147, 169, 202, 208
NY (US); Donald W. Schmidt, Stone See application file for complete search history.
Ridge, NY (US); Bharat Sukhwani,
Briarcliff Manor, NY (US); Mathew S. (56) References Cited
Thoennes, West Harrison, NY (US)
U.S. PATENT DOCUMENTS
(73) Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION 2008/0189252 Al* 82008 Branscome GO6F 17/30442
Armonk, NY (US) ’ 2012/0188263 Al 7/2012 Bec_chi et al.
? 2012/0281003 Al 11/2012 Ortiz et al.
. 2015/0186268 Al 7/2015 Asaad et al.
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 * cited by examiner
U.S.C. 154(b) by 0 days. .
))))) Primary Examiner — Tuan Thai
Thl.s patent is subject to a terminal dis- Assistant Examiner — Shane Woolwine
claimer. (74) Attorney, Agent, or Firm — Cantor Colburn LLP;
(21) Appl. No.: 15/092,732 Mercedes Hobson
(22) Filed: Apr.7, 2016 7 ABSTRACT
Embodiments include methods, systems and computer pro-
(65) Prior Publication Data gram products for providing an extendable job structure for
executing instructions on an accelerator. The method
US 2016/0224268 Al Aug. 4, 2016 includes creating a number of data descriptor blocks, each
o memory location addresses and a pointer to a next of the
Related U.S. Application Data numbefl?] of the data descriptor blorc)k. The method further
(63) Continuation of application No. 14/144,794, filed on includes creating a last data descriptor block having memory
Dec. 31, 2013, now Pat. No. 9,336,056. location addresses and a last block indicator. Based on
determining that additional memory is required for execut-
(51) Imt. CL ing instructions on the accelerator, the method includes
GOG6F 12/00 (2006.01) modifying the last data descriptor block to become a data
GOGF 13/00 (2006.01) extender block having a pointer to one of one or more new
GOGF 13/28 (2006.01) data descriptor blocks and creating a new last data descriptor
GO6F 9/26 (2006.01) block.
GO6F 9/34 (2006.01)
GO6F 9/50 (2006.01) 20 Claims, 9 Drawing Sheets
30
\
32 33
302
NN N
- 31 3
S BN =
1 Tnput ‘/ Gurput 1
] 0 R —
1 e 00 3z [[
m EN I

US 9,448,845 B2

Sheet 1 of 9

Sep. 20, 2016

U.S. Patent

STl e

I D14

S A SS9}
ger weronuod | 111 S/O 091 =@oefrau]
cwuwwuos_\%m_ mdmpndug FI0MISN
STI ronuo) 011 AIoWeN 0Z1 23e101§

K1owayy

¢Z1 Iefonuo)
Kepdsiq

0LT 24oe)

G0 40552001d

%

0¢T \\

A

A 4

081
JOIBID[RODY

101

001

U.S. Patent

200

206

Sep. 20, 2016 Sheet 2 of 9
= — M ©
ol h ~
A
A 4
o0 jaw} — (@ (o))
O| — — — <
AQll o~ o~ N
o
=)
N

204

US 9,448,845 B2

FIG. 2

US 9,448,845 B2

Sheet 3 of 9

Sep. 20, 2016

A 4

U.S. Patent

¢ ‘DId
GEN S pug
< Joold - Ad01d
aordirosa(q 1mdiasag
meq | ClE 90t -
nding ndur
. — —1y o]
iosad c0e \ yoorg
< J0iduosaq Co¢ Jordrsa(q
elRQ e
mdingo \1 nduy
/“ $Og “
01¢
Joord
B [onuo)
X qof

US 9,448,845 B2

Sheet 4 of 9

Sep. 20, 2016

U.S. Patent

¥ "DI4

Yoorg 1T

v

Yoorg 1XeN

AV

1444

Anug a3ed vieq

Anug a3ed vieq

Anug a3ed vieq

y T

Anug a3ed vieq

Anug a3ed vieq

Anug a3ed vieq

uno)) agded

Ovy

0oV

US 9,448,845 B2

Sheet 5 of 9

Sep. 20, 2016

U.S. Patent

¢ 'DId

91¢
N

_l i [4—R(C
AU ~
o1 ¢ o
Toorg 10idmaseq
90¢ J01diroseq | veq p—————>p
IopuaIxy trd 1488 wndug
mnduy » maN fp—
ereg
ndug MON
N _ > (49
SIS S0S \ mw_oc_m
pug w OW 10} ﬂwmm
mdu |_|'
Cec ol \ T
Joydimoseq Y0S y
e [< vCs
mding cls »
< 201 /
1oydiosag cO¢% yoorq
_ e [onuo)
ndino qor
v/ 018 08 v/
0es 0¢s

00¢

US 9,448,845 B2

Sheet 6 of 9

Sep. 20, 2016

U.S. Patent

9 D4
919 ,
_I pe [——809
NETER § S o
yoorg sordrmsaqq
909 101d11983(T veq
veqg —¥I19 mdug
Jopualrxyg -
eq mdur > MoN L
mduj MON
—
¢19 S09 yoojg
P ‘ 101duosaq
309 wed
d >
€9 worg S e
J0)duose #O@
ereq J < 29
[mding 19 >
« o |
101d13989(1 C09 yoolg
A|_| eieq [onuo)
mdingo qof
/ 019 09 /
0£9 / 029

009

US 9,448,845 B2

Sheet 7 of 9

Sep. 20, 2016

U.S. Patent

L DId

JOJBOIPUT Y[O0[q JSB]) PUE Y20[q JOIALIISIP BIEP JSB] MU 20} [JIM PIJBIOOSSE

—¥| ®jep I0] SUONEDO] AJOUISW JO Idquinu pax1j o) Jursudurod 3oo1q 10)d1rosop Biep 1se] MoU B Sujesr)

f

$31901q 103d11050p BIRP MOU I3 JO 10U B 0 4ojutod v pue syo0[q J0idLIosop
+1 h\v BIED MOU JY) JO YOBD IIA POJBIOOSSE BIED 10) SUOIEO0] AIOWDW JO Joquuinu paxty € sosudwoo
$[901¢ 103dLIOSOP BJRP MOU O} JO ORI UIDIOYMA ‘$300]q J0IdLIOSOp BIBP AU QJOW 1O DUO Suljedl))

i

91L

JIoYRIa[000e pasn J1 350[q 3} JO Joquinu
9y} UO SUOTIONIISUT UOTEISUST JUSAIOUT pue J20[q 10)d1I2sop ejep mau € 0) 1ojutod e ATUO Yiim
Jo uonnd9x9d 99[dwo)) 00]q JOPULIXS BIEP B AWI09q 0) }20[q JOIdIIISIp vIEp ISe] APUALIND AJIPOJA

CIL

01L

(JOIRI[AD5. A) UO SUOTIONI)SUT
Funnsaxa J0] Papasu AIOWSW [RUOT)IPPR S|

J0YBIO[OOOE DU UO SUOIOTUISUL 9y} Fulndoxd pue 3soy oy uo uonedstjdde oy Funnooxy <

90L r

3001q J03d110sap eiEp Ise[2y 01 syutod s320[q J03dIIISIP BIED 1) JO JqUINU) JO 1XoU 2]
0} s1aurtod 1]} JO UO UTAIIYM “JOJRITPUT JD0[q ISB] Ue PUR Yd0[q 10)d1I0SOp BIep ISe[M PAJRIDOSSE
BJEP JOJ SUONEI0] AJOWRW Jo Iaquiny paxiy o) suisudwos soo)q 10yduosap eyep ise] e Sunear)

f

T0L—)] yoo[q 103dLIos9op BIRp Y JO JoquInu 91 Jo 1xau & 0} sutod e pue syoo[q 10)duIosop
BJEBD JO JOqUINU O} JO YOBD (NIM POJBIOOSSE BIEP JOJ SUOIBD0] AIOWOU JO OqUIny poxy B sosuduwod
et $3190[q 103dLIDSIP BIRP JO JOQUUIU QU] JO YOBO ULDIOUYM “$)00]q 103d110s0p B1ep Jo Joquinu & Suiesl))

00L

YOL

US 9,448,845 B2

Sheet 8 of 9

Sep. 20, 2016

U.S. Patent

808

€908 —»

Pe8 —

puy

V8 'DHH

Y

Fo01d
103duoseq

ere(
mndug

Foord

10dtosa
meq
nduy

2019
[o1u07y
qor

_ [uen _.T\\\ re8

A 4

<08

>

——=3— 8

US 9,448,845 B2

Sheet 9 of 9

Sep. 20, 2016

U.S. Patent

o\ 2

d8 ‘D

J01dr1osaq
g

MIN]

808

mdug _ >

CI8

4908 —»|
Pe8 —

ury

TOpUAX
BIB(T

mduj

7 uen

Foo1d
[onuo)

qor

<08

>

—— T R—og
Joo1d —
J01durosa(y
rIRQ >
> ndug V/
o8 |
/ , P18
< o Ll p—
Foord
1o01duse(q
ereq
nduy
> _ 1 U2y _A_\\\\\\ ._umw
708

US 9,448,845 B2

1
EXTENDIBLE INPUT/OUTPUT DATA
MECHANISM FOR ACCELERATORS

DOMESTIC PRIORITY

This application is a continuation of U.S. patent applica-
tion Ser. No. 14/144,794, filed Dec. 31, 2013, the disclosure
of which is incorporated by reference herein in its entirety.

BACKGROUND

The present invention relates to data processing by accel-
erators, and more specifically, to a system of extendible
input/output data mechanisms for use by an accelerator.

In general, a central processing unit (CPU), or host,
offloads specific processing tasks to accelerators to reduce
the workload on the CPU. The use of accelerators, such as
field programmable gate arrays (FPGAs) and graphics pro-
cessing units (GPUs), to process specific tasks is becoming
more wide spread.

Currently, an interface between the host and an accelera-
tor is implemented as a queue on the host, which queues jobs
for the accelerator to be worked on asynchronously. A
control structure is typically used by the host to convey the
job information such as what operations are to be executed
by the accelerator, locations of the input data in memory and
locations in memory to write the output data. These data
location values are traditionally static for the life of the job,
which is from the creation of the control block in the queue
until the job is complete. The static nature of the data
location values limits the job to a fixed amount of input/
output data which must be determined before the creation of
the control structure.

In many cases, the specification of the entire input/output
areas in host memory before the creation of the control
structure may require locking a large amount of data/
memory space for the entire duration of the job including
time spent queued for the accelerator. In addition, since the
amount of data output may not be known at the time of
creation of the control structure, a worst case estimate is
commonly used to reserve adequate space for the output
data.

SUMMARY

Embodiments include methods, systems and computer
program products for providing an extendable job structure
for executing instructions on an accelerator. The method
includes creating, with a processing device, a number of data
descriptor blocks, wherein each of the number of data
descriptor blocks comprises a fixed number of memory
location addresses for data associated with each of the
number of data descriptor blocks and a pointer to a next of
the number of the data descriptor block. The method also
includes creating a last data descriptor block comprising the
fixed number of memory location addresses for data asso-
ciated with last data descriptor block and an last block
indicator, wherein one of the pointers to the next of the
number of the data descriptor blocks points to the last data
descriptor block. Based on determining that additional
memory is required for executing instructions on the accel-
erator, the method includes modifying the last data descrip-
tor block to become a data extender block comprising a
pointer to one of one or more new data descriptor blocks,
each of the one or more new data descriptor blocks com-
prises the fixed number of memory location addresses for
data and creating a new last data descriptor block compris-

10

15

20

25

30

35

40

45

50

55

60

65

2

ing the fixed number of memory locations for data associ-
ated with the new last data descriptor block and the last
block indicator.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein
and are considered a part of the claimed invention. For a
better understanding of the invention with the advantages
and the features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims
at the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 depicts a block diagram of a computer system for
practicing the teachings herein according to an embodiment;

FIG. 2 depicts a block diagram of a system having an
extendible input/output data mechanism for an accelerator in
accordance with an exemplary embodiment;

FIG. 3 depicts a block diagram of an initial job structure
for an accelerator in accordance with an exemplary embodi-
ment;

FIG. 4 depicts a block diagram of a data descriptor block
in accordance with an exemplary embodiment;

FIG. 5 depicts a block diagram of an extended job
structure for an accelerator in accordance with an exemplary
embodiment;

FIG. 6 depicts a block diagram of an extended job
structure for an accelerator in accordance with an exemplary
embodiment;

FIG. 7 depicts a flow diagram of a method for accelerating
multiple query processing operations in accordance with an
exemplary embodiment,

FIG. 8A depicts a block diagram an initial job structure
for an accelerator in accordance with an exemplary embodi-
ment; and

FIG. 8B depicts a block diagram of an extended job
structure for an accelerator in accordance with an exemplary
embodiment.

DETAILED DESCRIPTION

Embodiments disclosed herein include a system having an
extendible input/output data mechanism for processing a job
on an accelerator. The extendible input/output data mecha-
nism is configured to allow the extension of the input and
output areas used by a job while the job runs. In exemplary
embodiments, an application can specify the input and
output at the time of job creation and can also add more input
data for the accelerator or extend the output area if the
accelerator is coming close to filling up the pre-defined
output area while the job is being processed by the accel-
erator. In exemplary embodiments, the input/output data
mechanism does not require either the host or the accelerator
to spin while waiting for the other to do something that the
other has requested. In exemplary embodiments, the input/
output data mechanism can also be used to assign and free
pages from the input, creating a sliding window where only
a portion of the input data must be locked in memory while
the accelerator processes that input data.

Referring now to FIG. 1, a block diagram of an exemplary
computer system 100 for use with the teachings herein is
shown. The methods described herein can be implemented

US 9,448,845 B2

3

in hardware software (e.g., firmware), or a combination
thereof. In an exemplary embodiment, the methods
described herein are implemented in hardware, and is part of
the microprocessor of a special or general-purpose digital
computer, such as a personal computer, workstation, mini-
computer, or mainframe computer. The system 100 therefore
includes general-purpose computer 101.

In an exemplary embodiment, in terms of hardware archi-
tecture, as shown in FIG. 1, the computer 101 includes a
processor 105, memory 110 coupled via a memory control-
ler 115, a storage device 120, and one or more input and/or
output (I/O) devices 140, 145 (or peripherals) that are
communicatively coupled via a local input/output controller
135. The input/output controller 135 can be, for example,
but not limited to, one or more buses or other wired or
wireless connections, as is known in the art. The input/
output controller 135 may have additional elements, which
are omitted for simplicity, such as controllers, buffers
(caches), drivers, repeaters, and receivers, to enable com-
munications. Further, the local interface may include
address, control, and/or data connections to enable appro-
priate communications among the aforementioned compo-
nents. The storage device 120 may include one or more hard
disk drives (HDDs), solid state drives (SSDs), or any other
suitable form of storage.

The processor 105 is a computing device for executing
hardware instructions or software, particularly that stored in
memory 110. The processor 105 can be any custom made or
commercially available processor, a central processing unit
(CPU), an auxiliary processor among several processors
associated with the computer 101, a semiconductor based
microprocessor (in the form of a microchip or chip set), a
macroprocessor, or generally any device for executing
instructions. The processor 105 may include a cache 170,
which may be organized as a hierarchy of more cache levels
(L1, L2, etc.).

The memory 110 can include any one or combination of
volatile memory elements (e.g., random access memory
(RAM, such as DRAM, SRAM, SDRAM, etc.)) and non-
volatile memory elements (e.g., ROM, erasable program-
mable read only memory (EPROM), electronically erasable
programmable read only memory (EEPROM), program-
mable read only memory (PROM), tape, compact disc read
only memory (CD-ROM), disk, diskette, cartridge, cassette
or the like, etc.). Moreover, the memory 110 may incorpo-
rate electronic, magnetic, optical, and/or other types of
storage media. Note that the memory 110 can have a
distributed architecture, where various components are situ-
ated remote from one another, but can be accessed by the
processor 105.

The instructions in memory 110 may include one or more
separate programs, each of which comprises an ordered
listing of executable instructions for implementing logical
functions. In the example of FIG. 1, the instructions in the
memory 110 include a suitable operating system (OS) 111.
The operating system 111 essentially controls the execution
of other computer programs and provides scheduling, input-
output control, file and data management, memory manage-
ment, and communication control and related services.

In an exemplary embodiment, a conventional keyboard
150 and mouse 155 can be coupled to the input/output
controller 135. Other output devices such as the /O devices
140, 145 may include input devices, for example but not
limited to a printer, a scanner, microphone, and the like.
Finally, the /O devices 140, 145 may further include devices
that communicate both inputs and outputs, for instance but
not limited to, a network interface card (NIC) or modulator/

10

15

20

25

30

35

40

45

50

55

60

65

4

demodulator (for accessing other files, devices, systems, or
a network), a radio frequency (RF) or other transceiver, a
telephonic interface, a bridge, a router, and the like. The
system 100 can further include a display controller 125
coupled to a display 130. In an exemplary embodiment, the
system 100 can further include a network interface 160 for
coupling to a network 165. The network 165 can be an
IP-based network for communication between the computer
101 and any external server, client and the like via a
broadband connection. The network 165 transmits and
receives data between the computer 101 and external sys-
tems. In an exemplary embodiment, network 165 can be a
managed [P network administered by a service provider. The
network 165 may be implemented in a wireless fashion, e.g.,
using wireless protocols and technologies, such as Wi-Fi,
WiMax, etc. The network 165 can also be a packet-switched
network such as a local area network, wide area network,
metropolitan area network, Internet network, or other similar
type of network environment. The network 165 may be a
fixed wireless network, a wireless local area network (LAN),
a wireless wide area network (WAN) a personal area net-
work (PAN), a virtual private network (VPN), intranet or
other suitable network system and includes equipment for
receiving and transmitting signals.

If the computer 101 is a PC, workstation, intelligent
device or the like, the instructions in the memory 110 may
further include a basic input output system (BIOS) (omitted
for simplicity). The BIOS is a set of essential routines that
initialize and test hardware at startup, start the OS 111, and
support the transfer of data among the storage devices. The
BIOS is stored in ROM so that the BIOS can be executed
when the computer 101 is activated.

When the computer 101 is in operation, the processor 105
is configured to execute instructions stored within the
memory 110, to communicate data to and from the memory
110, and to generally control operations of the computer 101
pursuant to the instructions. In exemplary embodiments, the
computer system 100 includes one or more accelerators 180
that are configured to communicate with the processor 105.
The accelerator 180 may be a field programmable gate array
(FPGA) or other suitable device that is configured to per-
form specific processing tasks. In exemplary embodiments,
the computer system 100 may be configured to offload
certain processing tasks to an accelerator 180 because the
accelerator 180 can perform the processing tasks more
efficiently than the processor 105.

Referring now to FIG. 2, a block diagram illustrating a
system 200 having an accelerator 206 in accordance with an
exemplary embodiment is shown. The system 200 includes
a host 204, which may be a computer as shown in FIG. 1.
In exemplary embodiments, the host 204 is executing one or
more applications 202 and offloads one or more processing
tasks from the applications 202 to the accelerator 206 by
sending instructions to a driver 208 for the accelerator 206.
In exemplary embodiments, the driver 208 includes a queue
210 for managing jobs to be sent to the accelerator 206 and
a status indicator 212 for tracking the status of the accel-
erator 206. In exemplary embodiments, the driver 208 may
also include an interrupt handler 211 that is configured to
monitor the status indicator 212 and to cause an interrupt
when value of the status indicator 212 is a predetermined
value. In exemplary embodiments, the host 204 includes a
memory 209 that is accessible by application 202 and the
accelerator 206. The application 202 is configured to write
data to that will be accessed by the accelerator 206 to the

US 9,448,845 B2

5

memory 209. Likewise, the accelerator 206 is configured to
write data that will be accessed by the application 202 to the
memory 209.

In exemplary embodiments, the application 202 creates a
job control block for each job, or set of instructions, that it
sends to the accelerator 206. The job control block includes
an indication of the operations that the accelerator 206 is to
perform, an identification of the locations in memory 209 of
input data to be used by the accelerator 206, and an
identification of the locations in memory 209 that the
accelerator 206 should write output data to. In exemplary
embodiments, the accelerator 206 includes a service layer
214 and application logic 216. The service layer 214 is
configured to communicate with the driver 208 of the host
204 and the application logic 216 is configured to execute
the instructions received from the host 204.

Although a single accelerator 206 is shown, it will be
clear to one of ordinary skill in the art that the system 200
may include multiple accelerators 206, which can be
arranged in the system 200 in a variety of configurations. For
example, multiple accelerator chips may be located on a
single accelerator card (e.g., PCle card), a single accelerator
chip may be located on each of multiple accelerator cards in
the system, or a combination of the two arrangements can be
used. In exemplary embodiments, the communication
among different accelerators can be performed in a variety
of ways based on the system configuration.

Referring now to FIG. 3, a block diagram of an initial job
structure 300 for processing a job by an accelerator in
accordance with an exemplary embodiment is shown. In
exemplary embodiments, the job structure 300 includes a
job control block 302 that is created by an application. In
exemplary embodiments, the application creates a job con-
trol block 302 for each job, or set of instructions, that it sends
to the accelerator. The job control block includes an indi-
cation of the operations that the accelerator is to perform and
a pointer to a data descriptor block that provides the accel-
erator with memory locations for input and/or output data. In
exemplary embodiments, the data descriptor block can
include an input data descriptor block 304 and/or an output
data descriptor block 310.

In exemplary embodiments, the input data descriptor
block 304 includes pointers to one or more locations 322 in
memory 320 which contain input data to be used by the
accelerator. In addition, the input data descriptor block 304
includes a pointer 305 to a next input data descriptor block.
In exemplary embodiments, the next input data descriptor
block may be a last input data descriptor block 306, which
includes pointers to one or more locations 322 in memory
320 that contain input data to be used by the accelerator. In
addition, the last input data descriptor block 306 includes
indicator 308 that it is the last input data descriptor block
306 of the job.

In exemplary embodiments, the output data descriptor
block 310 includes pointers to one or more locations 332 in
memory 330 which are used by the accelerator to write
output data to. In addition, the output data descriptor block
310 includes a pointer 305 to a next output data descriptor
block. In exemplary embodiments, the next output data
descriptor block may be a last output data descriptor block
312, which includes pointers to one or more locations 332 in
memory 330 that are used by the accelerator to write output
data to. In addition, the last output data descriptor block 312
includes indicator 308 that it is the last output data descriptor
block 312 of the job. In exemplary embodiments, the
memory 320 and memory 330 reside in the memory of the
host, as shown in FIG. 2.

20

25

30

40

45

55

6

Referring now to FIG. 4, a block diagram of a data
descriptor block 400 in accordance with an exemplary
embodiment is shown. The data descriptor block 400 may be
either an input or output data descriptor block as shown in
FIG. 3. In exemplary embodiments, each data descriptor
block 400 is a fixed size block that includes a header 440, a
plurality of data page entries 442 and a pointer 444 to the
next data descriptor block. In exemplary embodiments, each
of the data page entries 442 is an address and length of the
next entry valid in the memory or an address and length of
alast valid entry in the memory. In exemplary embodiments,
the header 440 includes a total number of input or output
address entries for the job. In one embodiment, when the
pointer 444 to the next data descriptor block has a NULL
value, the data descriptor block is the last data descriptor
block of a job. In other embodiments, the data descriptor
block 400 may include a separate last block indicator 446
used to indicate that the data descriptor block is the last data
descriptor block of a job. In other embodiments, a single
entry can be used to combine these two indicators along
with, or instead of| a data page entry to utilize only one entry
in the data descriptor block

In exemplary embodiments, the job structure used for
processing jobs by an accelerator is configured such that the
amount of memory allocated for both input and output data
can be modified during execution of the job by the accel-
erator. In exemplary embodiments, the amount of memory
allocated can be extended by creating a new last data
descriptor block and modifying the existing last data
descriptor block of the job. For example, upon determining
that the application would like to provide additional input
data to the accelerator, the application may modify the
existing last input data descriptor block to create a pointer to
point to a new input data descriptor block that references
additional memory locations. In exemplary embodiments,
during execution of the job by the accelerator, the accelera-
tor is configured to re-fetch the last data descriptor block
after it completes processing the data referenced by the last
data descriptor block to determine if a new data descriptor
block has been added by the application during the process-
ing of the current last data descriptor block.

In exemplary embodiments, the data descriptor blocks are
fetched, or retrieved, by the accelerator on demand. That is,
the accelerator retrieves the data descriptor blocks during
execution of the job as they are needed. Accordingly, the
number of pages of input data for a job being executed can
be extended by modifying last block in chain of data
descriptor blocks and replacing the last data descriptor block
with a single entry with pointer to new chain of input data
descriptor blocks.

Referring now to FIG. 5, a block diagram of an extended
job structure 500 for processing a job by an accelerator in
accordance with an exemplary embodiment is shown. The
extended job structure 500 is the job structure shown in FIG.
3 that has been extended to add an additional input data
descriptor block 516 and 514. In exemplary embodiments,
the job structure 500 includes a job control block 502 that is
created by an application. In exemplary embodiments, the
application creates a job control block 502 for each job, or
set of instructions, that it sends to the accelerator. The job
control block includes an indication of the operations that
the accelerator is to perform, a pointer to an input data
descriptor block 504, and a pointer to an output data
descriptor block 510.

In exemplary embodiments, the input data descriptor
block 504 includes pointers to one or more locations 524 in
memory 520 which contain input data that has to be pro-

US 9,448,845 B2

7

cessed by the accelerator. In exemplary embodiments, the
accelerator may report the number of input blocks that have
been processed to host, which could free the memory
locations 524 that have already been processed. In addition,
the input data descriptor block 504 includes a pointer 505 to
an input data extender block 506, which was the previous
last data descriptor block that has been modified to extend
the input memory available to the accelerator.

The input data extender block 506 includes a link 515 to
input data descriptor block 514. In exemplary embodiments,
the new input data descriptor block 514 includes pointers to
one or more locations 522 in memory 520 which contain
input data that may not have been processed by the accel-
erator. In addition, the new input data descriptor block 514
includes pointer 505 to the new input data descriptor block
516, which may be a last input data descriptor block. In
exemplary embodiments, the new data descriptor block 516
includes pointers to one or more locations 522 in memory
520 which contain input data that have not been processed
by the accelerator. In addition, if the new input data descrip-
tor block 516 is a last data descriptor block it will include an
indicator 508 that it is the last input data descriptor block of
the job. Otherwise, if the new input data descriptor block
516 is not the last data descriptor block it will include a
pointer to a next input data descriptor block.

In exemplary embodiments, the output data descriptor
block 510 includes pointers to one or more locations 532 in
memory 530 which are used by the accelerator to write
output data to. In addition, the output data descriptor block
510 includes a pointer 505 to a next output data descriptor
block. In exemplary embodiments, the next output data
descriptor block may be a last output data descriptor block
512, which includes pointers to one or more locations 532 in
memory 530 that are used by the accelerator to write output
data to. In addition, the last output data descriptor block 512
includes indicator 508 that it is the last output data descriptor
block 512 of the job. In exemplary embodiments, the
memory 520 and memory 530 reside in the memory of the
host, as shown in FIG. 2. It will be appreciated by those of
ordinary skill in the art that the same techniques that were
used to extend the input data space can be applied to the
output data space to extend the area in memory available for
output.

Referring now to FIG. 6, a block diagram of an extended
job structure 600 for processing a job by an accelerator in
accordance with an exemplary embodiment is shown. The
extended job structure 600 is the job structure shown in FIG.
3 that has been extended to add additional input data
descriptor blocks 616 and 614. In exemplary embodiments,
the job structure 600 includes a job control block 602 that is
created by an application. In exemplary embodiments, the
application creates a job control block 602 for each job, or
set of instructions, that it sends to the accelerator. The job
control block includes an indication of the operations that
the accelerator is to perform, a pointer to an input data
descriptor block 604, and a pointer to an output data
descriptor block 610.

In exemplary embodiments, the input data descriptor
block 604 includes a pointer 605 to an input data extender
block 606, which is a modification of the previous last data
descriptor block and contains only a pointer to the new data
descriptor block 614 to extend the input data and/or memory
for the accelerator. The input data extender block 606
includes a link 615 to input data descriptor block 614. In
exemplary embodiments, the input data descriptor block 614
includes pointers to one or more locations 622 in memory
620 which contain input data that may not have been

25

40

45

50

55

8

processed by the accelerator. In addition, the input data
descriptor block 614 includes pointer 605 to the new input
data descriptor block 616, which may be a last input data
descriptor block. The new data descriptor block 616 includes
pointers to one or more locations 622 in memory 620 which
contain input data that have not been processed by the
accelerator. In exemplary embodiments, the one or more
locations 622 in memory 620 may be locations that were
previously used by the data descriptor block 604 and that
were reused by the host. If the new input data descriptor
block 616 is a last data descriptor block it will include an
indicator 608 that it is the last input data descriptor block of
the job. Otherwise, if the new input data descriptor block
616 is not the last data descriptor block it will include a
pointer to a next input data descriptor block.

In exemplary embodiments, the output data descriptor
block 610 includes pointers to one or more locations 632 in
memory 630 which are used by the accelerator to write
output data to. In addition, the output data descriptor block
610 includes a pointer 605 to a next output data descriptor
block. In exemplary embodiments, the next output data
descriptor block may be a last output data descriptor block
612, which includes pointers to one or more locations 632 in
memory 630 that are used by the accelerator to write output
data to. In addition, the last output data descriptor block 612
includes indicator 608 that it is the last output data descriptor
block 612 of the job. In exemplary embodiments, the
memory 620 and memory 630 reside in the memory of the
host, as shown in FIG. 2. It will be appreciated by those of
ordinary skill in the art that the same techniques that were
used to extend the input data space can be applied to the
output data space to extend the area in memory available for
output.

In exemplary embodiments, the host is configured to
create a window of input data that will advance as the job
runs by releasing input data as it is processed by the
accelerator and writing new data to the location previously
occupied by the processed data. In order for the host to
release input data, the accelerator is configured to report
either a number of input pages processed in job completion
data, or the location of the last input page processed.

Referring now to FIG. 7, a flow diagram illustrating a
method 700 for providing an extendable job structure for
executing instructions on an accelerator according to an
embodiment is shown. As shown at block 702, the method
700 includes creating a number of data descriptor blocks,
wherein each of the number of data descriptor blocks
comprises a fixed number of memory locations for data
associated with each of the number of data descriptor blocks
and a pointer to a next of the number of the data descriptor
block. Next, as shown at block 704, the method 700 includes
creating a last data descriptor block comprising the fixed
number of memory locations for data associated with last
data descriptor block and an last block indicator, wherein
one of the pointers to the next of the number of the data
descriptor blocks points to the last data descriptor block. As
shown at decision block 706, the method 700 includes
executing the application on the host and executing the
instructions on the accelerator.

Continuing with reference to FIG. 7, as shown at decision
block 708, the method 700 includes determining if addi-
tional data and/or memory are needed for the current job
running on the accelerator. If additional data and/or memory
is not needed for the current job running on the accelerator,
the method proceeds to block 710 and execution of the job
on the accelerator is completed. Otherwise, the method 700
proceeds to block 712 and modifies the current last data

US 9,448,845 B2

9

descriptor block to become a data extender block. In addi-
tion, a generation number of last data descriptor block may
be incremented, if the last data descriptor block includes a
generation number. In exemplary embodiments, the data
extender block includes a pointer to the next data descriptor
block which could be the last data descriptor block or a new
intermediate data descriptor block. As shown at decision
block 714, the method 700 also includes creating a number
of new data descriptor blocks, wherein each of the number
of data descriptor blocks has a fixed number of memory
locations for data associated with each of the number of data
descriptor blocks and a pointer to a next of the number of the
new data descriptor blocks. Next, as shown at block 716, the
method 700 includes creating the new last data descriptor
block comprising the fixed number of memory locations for
data associated with last data descriptor block and the last
block indicator.

In exemplary embodiments, the job structure can be used
to add additional output data descriptor blocks when the
accelerator needs additional memory locations to write
output data to. In one embodiment, as shown in FIG. 2, the
accelerator status indicator 212 on the host 204 is configured
to track the status of the accelerator 206. The accelerator
status indicator 212 may be a fixed number of bits that are
used for indicating an attention condition. For example, the
accelerator status indicator 212 can be used to request
additional memory for output data where each new request
for additional memory will use a separate bit. In exemplary
embodiments, when the accelerator 206 reaches a trigger
condition the accelerator status indicator 212 will be updated
by the accelerator 206. In one embodiment, the trigger
condition could be a number of output pages remaining to be
used by the accelerator 206 falling below a threshold value.
In another embodiment, the trigger condition may be a
percentage of the total assigned output pages that have been
used by the accelerator 206 exceeding a threshold value.

In one embodiment, an interrupt may be caused on the
host 204 when the accelerator 206 updates the accelerator
status indicator 212. In response to the interrupt, the inter-
rupt handler 211 will call an exit to the application 202
registered with the interrupt handler 211. The application
202 will then update the job structure to extend the amount
of memory 209 available to the accelerator 206 for output
data. In one embodiment, the application 202 may modify
the last data descriptor block to create a data extender that
points to a list extension and updates the total page count. In
exemplary embodiments, the application 202 can build a list
extending the output space on demand or can have a
pre-built list that can be appended.

In one embodiment, if the application 202 updates the
data output descriptor blocks in response to a change in the
accelerator status indicator 212, the accelerator 206 may
never process the original last output data descriptor and will
continue processing normally. In another embodiment, when
the accelerator 206 processes the last output data descriptor
it may execute the last data descriptor but it may not treat it
as the end of list unless a flag in data descriptor end entry
indicates that the data descriptor was intended to be the end
of'the list. Otherwise, after the accelerator 206 processes the
last output data descriptor, the accelerator 206 will re-fetch
the last data descriptor block. If the first entry in the
re-fetched data descriptor block is a pointer entry, the list has
been extended and the accelerator 206 will fetch new data
descriptor block indicated by the pointer entry. Otherwise,
the job will be completed with a status of incomplete. In
exemplary embodiments, if data output pages can be corre-
lated to input pages processed, the accelerator may return

10

15

20

25

30

35

40

45

50

55

60

65

10

indication of last input page processed when a job is
completed with an incomplete status due to insufficient
output space allowing the application 202 to build a new job
to complete the processing of the remaining input data.

Referring now to FIGS. 8A and 8B, FIG. 8A illustrates a
block diagram of job structure 800 for processing a job by
an accelerator before being extended and FIG. 8B illustrates
the job structure 800 for processing a job by an accelerator
after being extended. In exemplary embodiments, every
extension of the chain of data descriptor blocks copies data
pointers 824 to memory locations 822 from the last block
8064 to the first block 814 of the extension and increments
a generation number 834 of prior last block 8064 and all new
blocks 816 in the extension. In addition, a data extender
8065 having a link 815 replaces the prior last block 806a to
extend the chain of data descriptor blocks.

In exemplary embodiments, when the last block 8064 in
a chain is updated before it is fetched by accelerator, the
pointers 824 to data in prior last block 806a are replicated to
first block 814 in the extension of the chain. In exemplary
embodiments, when the last block 806a in chain is fetched
by accelerator prior to being extended the accelerator will
re-fetch last block 8064 after it completes processing the last
block 806a. By re-fetching the last block 806a, the accel-
erator can determine if the generation number 834 of the last
block 806a has changed, which indicates an extension has
occurred. Accordingly, in this case a first block 814 in
extension of the chain may be skipped since data 822
pointed to by pointers 824 were processed before the last
block 8064 was re-fetched. In exemplary embodiments, the
generation number is configured to track the number of
times the extendable job structure, which includes the chain
of data descriptor blocks, has been extended and every
extension of the chain has will have different generation
number. The use of generation numbers 834 is configured to
insure that no input data space is lost by re-fetching mecha-
nism.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Any combination of one or more computer readable
medium(s) may be utilized. The computer readable medium
may be a computer readable storage medium. A computer
readable storage medium may be, for example, but not
limited to, an electronic, magnetic, optical, electromagnetic,
infrared, or semiconductor system, apparatus, or device, or
any suitable combination of the foregoing. More specific
examples (a non-exhaustive list) of the computer readable
storage medium would include the following: an electrical
connection having one or more wires, a portable computer
diskette, a hard disk, a random access memory (RAM), a
read-only memory (ROM), an erasable programmable read-
only memory (EPROM or Flash memory), an optical fiber,
a portable compact disc read-only memory (CD-ROM), an
optical storage device, a magnetic storage device, or any
suitable combination of the foregoing. In the context of this
document, a computer readable storage medium may be any

US 9,448,845 B2

11

tangible medium that can contain, or store a program for use
by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ-
ing but not limited to wireless, wireline, optical fiber cable,
RF, etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language such as
Java, Smalltalk, C++ or the like and conventional procedural
programming languages, such as the “C” programming
language or similar programming languages. The program
code may execute entirely on the user’s computer, partly on
the user’s computer, as a stand-alone software package,
partly on the user’s computer and partly on a remote
computer or entirely on the remote computer or server. In the
latter scenario, the remote computer may be connected to the
user’s computer through any type of network, including a
local area network (LAN) or a wide area network (WAN), or
the connection may be made to an external computer (for
example, through the Internet using an Internet Service
Provider).

Aspects of the present invention are described above with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia-
gram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that can direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, such that the
instructions stored in the computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

The disclosed flowchart and block diagrams illustrate the
architecture, functionality, and operation of possible imple-
mentations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted

10

15

20

25

30

35

40

45

50

55

60

65

12

in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts, or combinations of special pur-
pose hardware and computer instructions.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
“comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele-
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, element components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the
invention and the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are
suited to the particular use contemplated.

The flow diagrams depicted herein are just one example.
There may be many variations to this diagram or the steps
(or operations) described therein without departing from the
spirit of the invention. For instance, the steps may be
performed in a differing order or steps may be added, deleted
or modified. All of these variations are considered a part of
the claimed invention.

While the preferred embodiment to the invention had
been described, it will be understood that those skilled in the
art, both now and in the future, may make various improve-
ments and enhancements which fall within the scope of the
claims which follow. These claims should be construed to
maintain the proper protection for the invention first
described.

What is claimed is:

1. A method for providing an extendable job structure for
executing instructions on an accelerator, the method com-
prising:

receiving, by a processing device, a number of data

descriptor blocks, wherein each of the number of data
descriptor blocks comprises memory location
addresses for data associated with each of the number
of data descriptor blocks and a pointer to a next of the
number of the data descriptor block;

receiving a last data descriptor block comprising memory

location addresses for data associated with last data
descriptor block and an last block indicator, wherein
one of the pointers to the next of the number of the data
descriptor blocks points to the last data descriptor
block;

US 9,448,845 B2

13

based on determining that additional memory is required
for executing instructions on the accelerator:
modifying the last data descriptor block to become a
data extender block comprising a pointer to one of
one or more new data descriptor blocks, each of the
one or more new data descriptor blocks comprises
memory location addresses for data; and
creating a new last data descriptor block comprising
memory locations for data associated with the new
last data descriptor block and the last block indicator.

2. The method of claim 1, wherein the data descriptor
blocks are input data descriptor blocks and the data associ-
ated with the data descriptor blocks is input data to be
processed by the accelerator.

3. The method of claim 1, wherein the data descriptor
blocks are output data descriptor blocks and the data asso-
ciated with the data descriptor blocks is output data gener-
ated by the accelerator.

4. The method of claim 1, further comprising:

based on determining that additional memory is required

for executing instructions on the accelerator, creating a
number of new data descriptor blocks, wherein each of
the number of new data descriptor blocks comprises
memory locations for data associated with each of the
number of new data descriptor blocks and a pointer to
a next of the number of the new data descriptor blocks.

5. The method of claim 4, wherein one of the pointers to
the next of the number of the new data descriptor blocks
points to the new last data descriptor block.

6. The method of claim 4, wherein each of the number of
data descriptor blocks, the last data descriptor block, the data
extender block, the number of new data descriptor blocks
and the new last data descriptor block include a generation
number.

7. The method of claim 6, wherein the generation number
is configured to track the number of times the extendable job
structure has been extended.

8. A system comprising a processing device configured to:

receive a number of data descriptor blocks, wherein each

of the number of data descriptor blocks comprises
memory location addresses for data associated with
each of the number of data descriptor blocks and a
pointer to a next of the number of the data descriptor
block;

receive a last data descriptor block comprising memory

location addresses for data associated with last data
descriptor block and an last block indicator, wherein
one of the pointers to the next of the number of the data
descriptor blocks points to the last data descriptor
block;

based on determining that additional memory is required

for executing instructions on the accelerator to:

replace the last data descriptor block with an extender
block comprising a pointer to one of one or more
new data descriptor blocks, wherein each of the one
or more new data descriptor blocks comprises
memory location addresses for data; and

create a new last data descriptor block comprising
memory locations for data associated with the new
last data descriptor block and the last block indicator.

9. The system of claim 8, wherein the data descriptor
blocks are input data descriptor blocks and the data associ-
ated with the data descriptor blocks is input data to be
processed by the accelerator.

5

10

—_
w

20

25

35

40

45

50

60

65

14

10. The system of claim 8, wherein the data descriptor
blocks are output data descriptor blocks and the data asso-
ciated with the data descriptor blocks is output data gener-
ated by the accelerator.
11. The system of claim 8, further comprising:
based on determining that additional memory is required
for executing instructions on the accelerator, creating a
number of new data descriptor blocks, wherein each of
the number of new data descriptor blocks comprises
memory locations for data associated with each of the
number of new data descriptor blocks and a pointer to
a next of the number of the new data descriptor blocks.
12. The system of claim 11, wherein a new data extender
block replaces the last data descriptor block and contains a
pointer to the next of the number of the new data descriptor
blocks points to the new last data descriptor block.
13. The system of claim 11, wherein each of the number
of data descriptor blocks, the last data descriptor block, the
data extender block, the number of new data descriptor
blocks and the new last data descriptor block include a
generation number.
14. The system of claim 13, wherein the generation
number is configured to track a number of times the extend-
able job structure has been extended.
15. A computer program product, comprising:
a non-transitory computer readable storage medium hav-
ing computer readable program code stored thereon
that, when executed, performs a method, the method
comprising:
receiving a number of data descriptor blocks, wherein
each of the number of data descriptor blocks comprises
memory location addresses for data associated with
each of the number of data descriptor blocks and a
pointer to a next of the number of the data descriptor
block;
receiving a last data descriptor block comprising memory
location addresses for data associated with last data
descriptor block and a last block indicator, wherein one
of the pointers to the next of the number of the data
descriptor blocks points to the last data descriptor
block;
based on determining that additional memory is required
for executing instructions on the accelerator:
modifying the last data descriptor block to become a
data extender block comprising a pointer to one of
one or more new data descriptor blocks, each of the
one or more new data descriptor blocks comprises
memory location addresses for data; and

creating a new last data descriptor block comprising
memory locations for data associated with the new
last data descriptor block and the last block indicator.

16. The computer program product of claim 1, wherein
the data descriptor blocks are input data descriptor blocks
and the data associated with the data descriptor blocks is
input data to be processed by the accelerator.

17. The computer program product of claim 1, wherein
the data descriptor blocks are output data descriptor blocks
and the data associated with the data descriptor blocks is
output data generated by the accelerator.

18. The computer program product of claim 1, further
comprising:

based on determining that additional memory is required
for executing instructions on the accelerator, creating a
number of new data descriptor blocks, wherein each of
the number of new data descriptor blocks comprises
memory locations for data associated with each of the

US 9,448,845 B2
15

number of new data descriptor blocks and a pointer to
a next of the number of the new data descriptor blocks.

19. The computer program product of claim 18, wherein
one of the pointers to the next of the number of the new data
descriptor blocks points to the new last data descriptor 5
block.

20. The computer program product of claim 18, wherein
each of the number of data descriptor blocks, the last data
descriptor block, the data extender block, the number of new
data descriptor blocks and the new last data descriptor block 10
include a generation number.

#* #* #* #* #*

16

